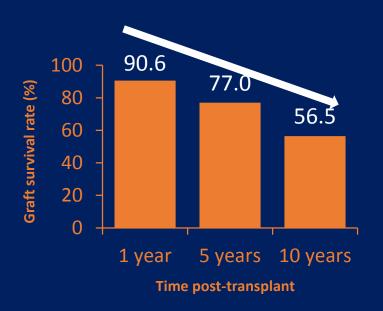
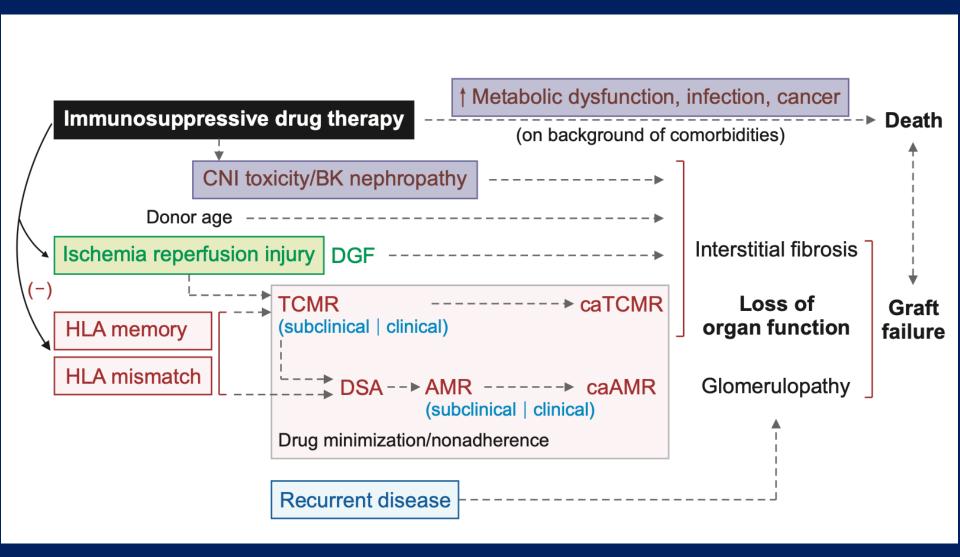
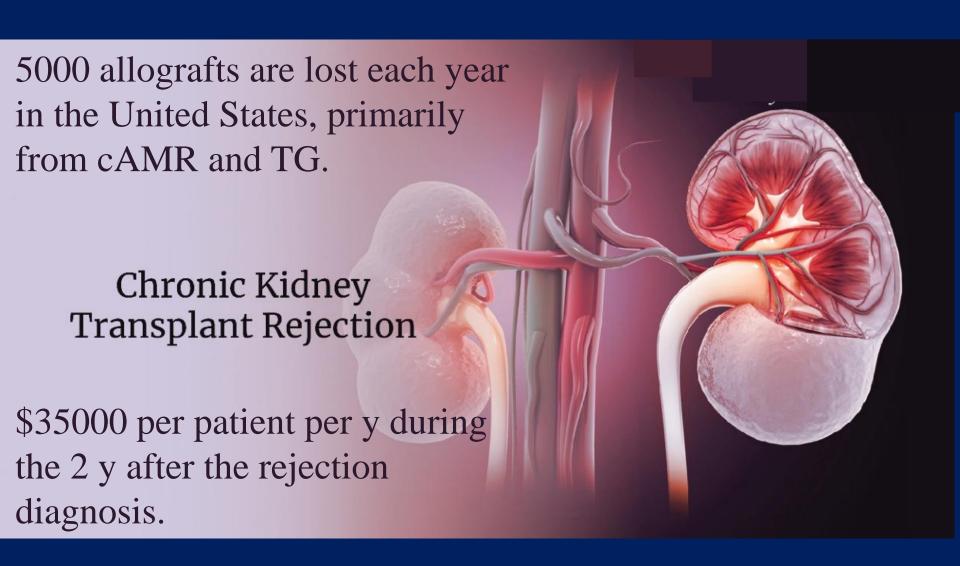
Nephrology and Transplantation Department Labbafinejad Medical Center



Chronic Active Antibody Mediated-Rejection


Shiva Samavat
Professor of Nephrology
Shahid Beheshti University of Medical Sciences
Labbafinejad Medical Center


Maintaining long-term graft survival remains a challenge: Kidney transplantation

Kidney graft survival by post-transplant years (CTS Europe)

Future disease risk

Risk markers:

- HLA mismatches
- HLA antibodies
- HLA-DSA
- Missing self
- Non-HLA antibodies
- ..

Ongoing disease probability

Non-invasive diagnostics:

- Serum creatinine/eGFR
- Proteinuria
- Blood markers (dd-cfDNA, mRNA)
- Urinary markers
- Polyomavirus PCR
- ...

Disease diagnosis

Biopsy-based diagnosis:

- Histological Banff classification
- Biopsy-based molecular diagnostics
- HLA-DSA, non-HLA antibodies

Disease stage/severity

Disease stage:

- Active disease
- Chronic/active disease
- Chronic disease

Disease severity/extent

- Activity index?
- Chronicity index?

Prognostication

Outcome prognostication:

- Single markers (e.g., eGFR evolution)
- Multidimensional markers (iBox)
- Patient comorbidities

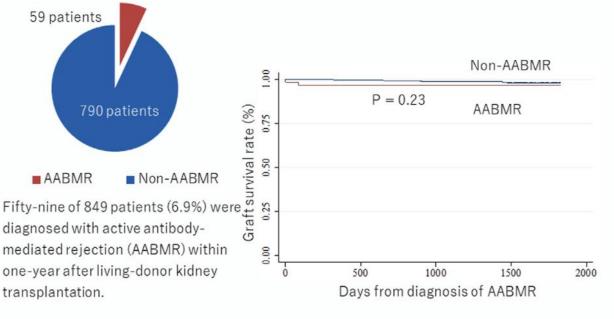
Prediction of therapy response

Predictive markers:

None available

RISK FACTORS FOR DEVELOPING CHRONIC AMR

• DSA (Preformed or *de novo*)


- A higher risk of graft loss correlated with DSA strength.
- The impact of preformed DSA on graft survival may depend on whether the DSA persists 3 months posttransplantation, with persistence influenced by the strength and specificity of the DSA.

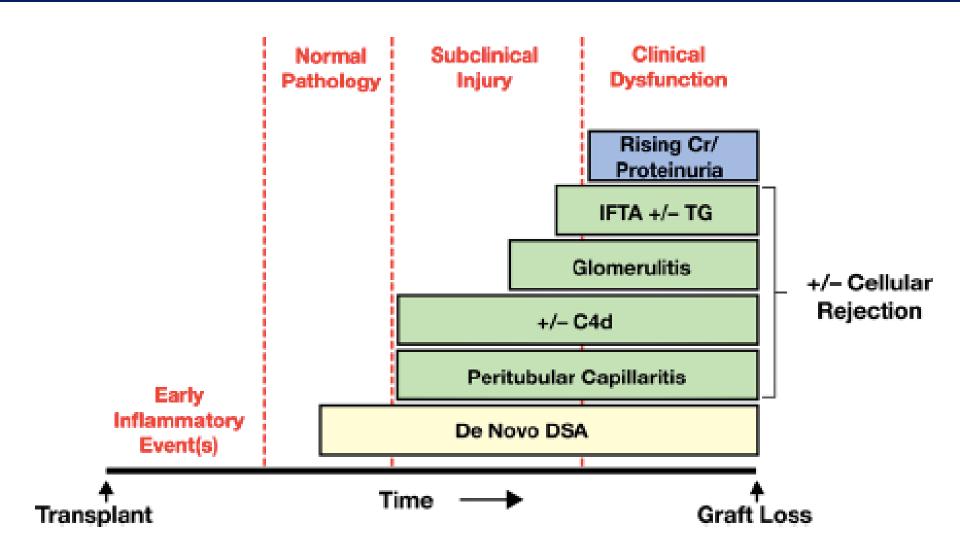
Risk markers:

- HLA mismatches
- HLA antibodies
- HLA-DSA
- Missing self
- Non-HLA antibodies
- ...

- Known risk factors for de novo DSA are:
 - •HLA mismatches, particularly the number of epitope mismatches in HLA-DR/DQ
 - •Inadequate immunosuppression
 - Medication nonadherence
 - •TCMR
 - Viral infection
 - Ischemia-reperfusion injury

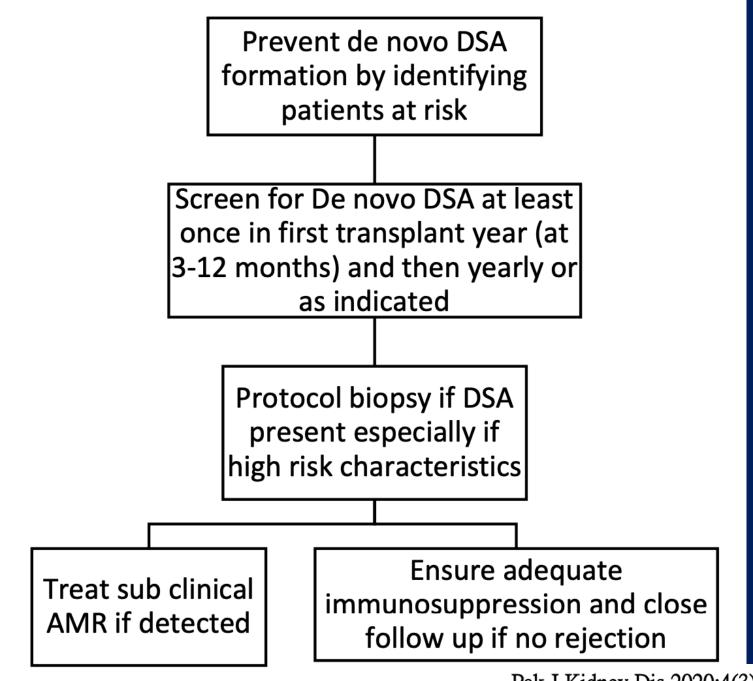
Higher donor age and severe microvascular inflammation are risk factors for chronic rejection after treatment of active antibody-mediated rejection

1.00 0.75 Donor age <59 Chronic AABMR-free rate (%) 0.50 P = 0.01Donor age ≥59 500 1500 2000 1000 0.50 MVI <4 P = 0.005MVI ≥4 0.00 1000 500 1500 2000 Days from kidney transplantation


Conclusion

While 5-year death-censored graft survival is good in both AABMR and non-AABMR groups, AABMR patients with donor age \geq 59 or microvascular inflammation (MVI) (g + ptc) score \geq 4 significantly developed chronic AABMR.

Banno T, et al. *Transpl. Int.* 2024 doi: 10.3389/ti.2024.11960



• Ideally, patients should be captured at an early stage of the disease:

- Serial surveillance biopsies
- eGFR or proteinuria
- dd-cfDNA release together with DSA screening,

Non-invasive diagnostics:

- Serum creatinine/eGFR
- Proteinuria
- Blood markers (dd-cfDNA, mRNA)
- Urinary markers
- Polyomavirus PCR
- ...

Pak J Kidney Dis 2020;4(3):264-272

DIAGNOSTIC CRITERIA

Banff Classification

Biopsy-based diagnosis:

- Histological Banff classification
- Biopsy-based molecular diagnostics
- HLA-DSA, non-HLA antibodies

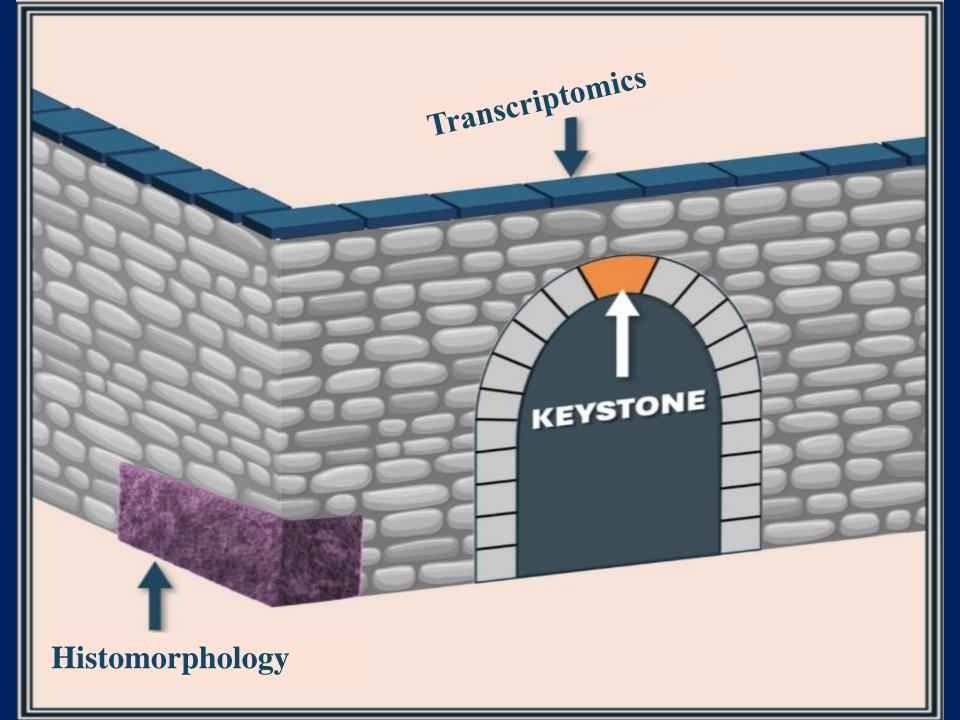
Disease stage:

- Active disease
- Chronic/active disease
- Chronic disease

Disease severity/extent

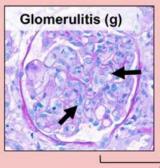
Activity index?

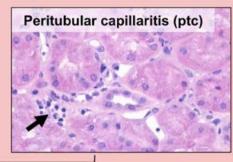
- Chronicity index?


		<u> </u>
Biomarker	Type of sample	Type of rejection
gp130, SH2D1B, TNFα, and CCL4	Plasma	AMR
miR-142-5p↓, miR-486- 5p↑	PBMC	CAAMR
CIITA↓, CTLA-4 mRNA↑	РВМС	CAAMR+dnDSA
ETV7, RSAD2	РВМС	AMR
Eight-gene assay	Plasma	AMR
synaptotagmin-17↑	Urine	CAAMR
orosomucoid 1↑	Urine	CAAMR

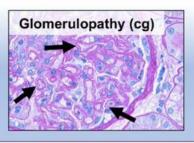

AZGP1↑

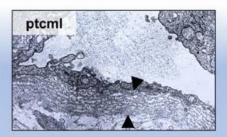
TABLE 3 Candidate biomarkers for antibody-mediated


CAAMR


Urine

AMR/MVI (Banff 2022)

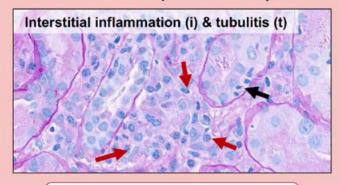

MVI (g+ptc)


Active AMR:
MVI ≥ 2 AND C4d ± DSA
C4d WITH MVI = 1 OR v > 0 OR TMA

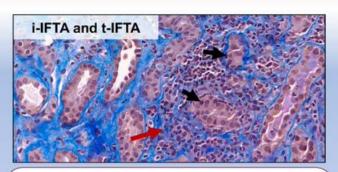
Probable active AMR:

DSA AND MVI = 1 OR v > 0 OR TMA

MVI, C4d negative, DSA negative: MVI ≥ 2, BUT NO C4d OR DSA



Chronic active AMR: Active lesions* AND cg > 0 AND/OR severe ptcml


Chronic AMR: cg > 0 AND/OR severe ptcml WITHOUT active lesions**

TCMR (Banff 2019)

Borderline: t ≥ 1 AND i1 OR t1 AND i ≥ 2

TCMR: Grade IA: i ≥ 2 AND t2 Grade IB: i ≥ 2 AND t3 Grade IIA: v1 ± i AND/OR t Grade IIB: v2 ± i AND/OR t Grade III: v3 ± i AND/OR t

Chronic active TCMR:

Grade IA: (i-IFTA \geq 2 AND ti \geq 2) AND (t2 OR t-IFTA2) Grade IB: (i-IFTA \geq 2 AND ti \geq 2) AND (t3 OR t-IFTA3) Grade II: Neointima with mononuclear cells Disease stage/severity

Disease stage:

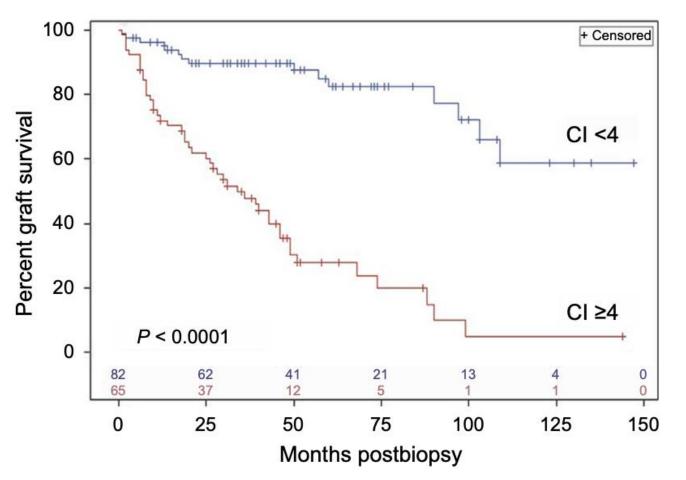
- Active disease
- Chronic/active disease
- Chronic disease

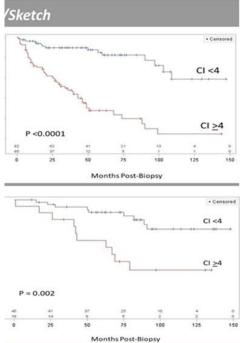
Disease severity/extent

- Activity index?
- Chronicity index?

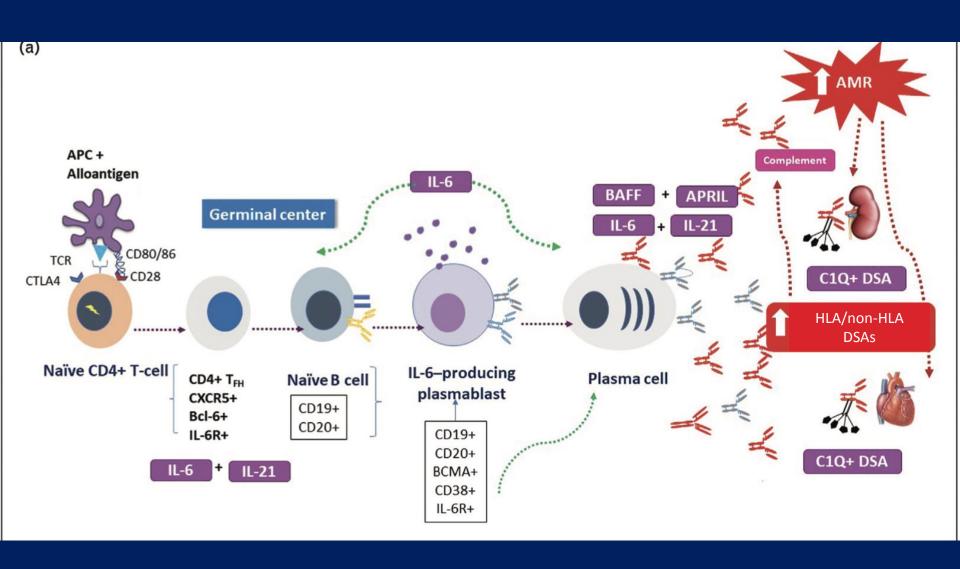
7

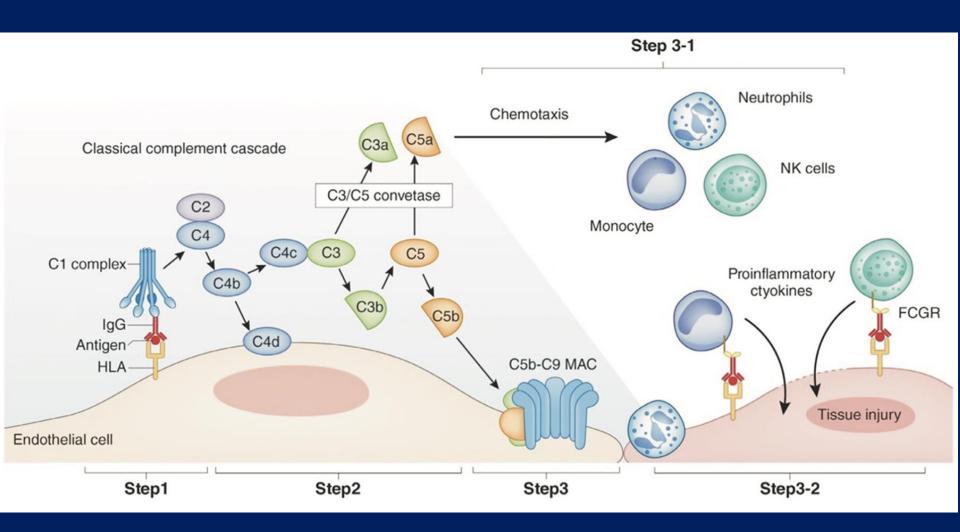
Activity index


$$g + ptc + v + C4d$$


Chronicity index

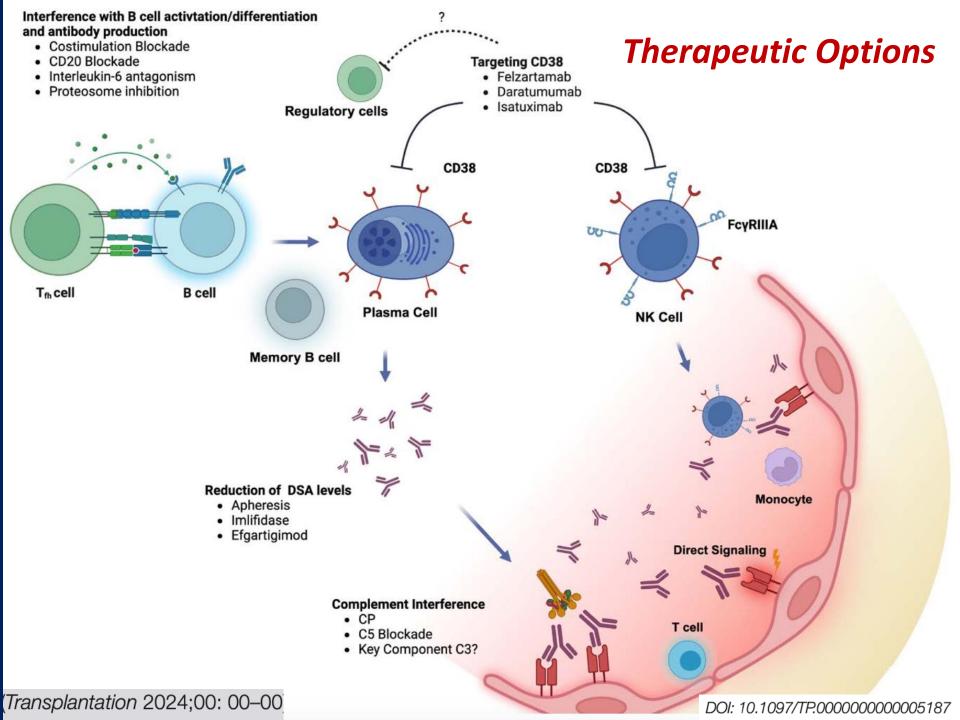
A Banff-based histologic chronicity index is associated with




renal allograft biopsy with an strongly associated with graft tive patients, respectively.

The continuum of "pure ABMR" in kidney transplant recipients with preformed DSA

	ABMR continuum					
	Early acute ABMR (+XM)	Acute ABMR	Active (smoldering) ABMR	Chronic active ABMR		
Clinical setting	Clinically apparent: AKI, <1 month post-transplant	Usually clinically apparent: AKI	Subclinical	Subclinical or clinically apparent: Progressive renal insufficiency, proteinuria, hypertension		
Histology	ATN, thrombi, mild capillaritis, v lesions	ATN, thrombi, capillaritis, v lesions	Capillaritis only (g, ptc)	Capillaritis and TG, TA, or PTCBMML		
C4d	Diffuse +	+	Negative, focal +, occasionally diffuse +	Negative, focal +, occasionally diffuse +		
Serum DSA 🍿	High	High	Low, mid	Low, mid		


IMMUNOLOGIC MECHANISMS

 The current treatment paradigms rely on reduction of antibody levels to prevent AMR.

•This raises the importance of maintaining immunosuppression and investigating novel methods to prevent and treat AMR/cAMR that directly address the reduction of DSAs and antibody-producing cells.

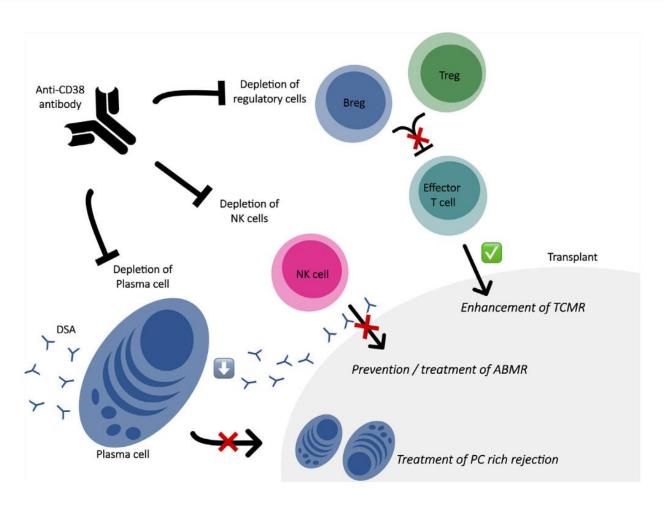


FIGURE 1 | Immune effects of anti-CD38 antibody in the context of solid organ transplantation. ABMR, antibody mediated rejection; Breg, regulatory B cell; DSA, donor specific antibodies; PC, plasma cell; TCMR, T cell mediated rejection; Treg, regulatory T cell.

Major Therapeutic Concepts

- •CD20 antibody rituximab as a sole treatment or in combination with IVIG (phase 2)
- Proteasome inhibition using bortezomib (phase 2)
- Targeting IL-6 with the anti-IL-6 antibody clazakizumab (phase 2 and phase 3)
- •DSA cleavage with imlifidase (phase 2)
- Targeting CD38 with felzartamab (phase 2).

OPEN

Recommended Treatment for Antibody-mediated Rejection After Kidney Transplantation: The 2019 Expert Consensus From the Transplantion Society Working Group

There was no conclusive evidence to support any specific therapy

There are no FDA-approved treatments for acute or chronic AMR

Post-transplant surveillance and management of chronic active mediated rejection in renal transplant patients in Europe

BACKGROUND

Antibody mediated rejection (ABMR) is the leading cause of immunerelated allograft failure following kidney transplantation. Chronic active ABMR (CABMR) typically occurs after one-year post-transplant and is the most common cause of late allograft failure

STUDY AIM

To assess common practices in Europe for post-transplant surveillance one year after kidney transplant, and diagnosis and management of CABMR.

Online survey

METHODS AND COHORT

Transplant nephrologists
Transplant surgeons
Nephrologists
N=56

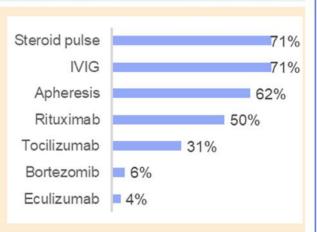
Practicing 3-30 years 5 patients/year with CABMR Perform DSA testing

February – November 2022

CRITERIA

RESULTS

POST TRANSPLANT SURVEILLANCE



Observing clinical measures of graft function forms the cornerstone of post-transplant surveillance. This may be suboptimal, leading to late diagnoses and untreatable disease.

Less than half of patients who develop CABMR receive treatment beyond optimization of immune suppression

CABMR TREATMENT

Intravenous
Immunoglobulin
(IVIG), steroid pulse
and apheresis are
most prescribed to
treat CABMR. While
biologics can feature
as part of treatment,
there is no single
preferred agent

Rostaing, et al. Transpl. Int. 2023 doi: 10.3389/ti.2023.11381

Systematic t	als in late and chronic active antibody-mediated rejection	
		Т

Primary target	Compound	Mechanism of action	Stage of development	Trial acronym	Identifier ^a	Study	Main trial results
PC	Bortezomib	Proteasome inhibition	Phase II (finished)	BORTEJECT	NCT01873157	Eskandary et al ⁹¹	No effect on DSA levels, morphologic/ molecular biopsy results, and eGFR slope
			Phase II (finished)	TRIBUTE	NCT02201576	_	Finalized, but not yet published
			Phase II (recruiting)	_	NCT03737136	_	Not yet finalized
PC/NK cells	Felzartamab	CD38 binding	Phase II (finished)	_	NCT05021484	Mayer et al ⁴⁴	Reduction/resolution of morphologic/ molecular AMR activity; NK cell depletion; decrease in plasma dd-cfDNA
B cells	Rituximab	CD20+ B cell depletion	Phase II (prematurely terminated)	TRITON	2010-023746- 67	Moreso et al ¹⁰⁷	No effect on morphologic biopsy results and eGFR course
			Phase IV (prematurely terminated)	RituxiCAN-C4	NCT00476164	Shiu et al ¹⁰⁸	No effect on clinical outcomes
			Phase III (recruiting)	TAR:GET-1	NCT03994783		Not yet finalized
	Fostamatinib	SYK inhibition	Phase II (recruiting)	FOSTAMR	NCT03991780	_	Not yet finalized

Systematic trials in late and chronic active antibody-mediated rejection							
Primary target	Compound	Mechanism of action	Stage of development	Trial acronym	Identifier ^a	Study	Main trial results
IL-6/IL-6R	Clazakizumab	IL-6 neutrali- zation	Phase II (finished)	_	NCT03444103	Doberer et al ⁹²	Moderate DSA reduction; modest effect on molecular AMR activity after 12 mo; effect on eGFR slope
			Phase III (prematurely terminated)	IMAGINE	NCT03744910	Nickerson et al ¹⁰⁹	No effect on eGFR slope (not yet published)
	Tocilizumab	IL-6R blockade	Phase III (recruiting)	INTERCEPT	NCT04561986	Streichart et al ¹¹⁰	Not yet finalized
Complement	BIVV009	Inhibition of C1s	Phase I (finalized)	_	NCT02502903	Eskandary et al ⁴⁷	Marked complement inhibition (ex vivo; C4d staining); no effect on morpho- logic/molecular AMR activity
	BIW020	Inhibition of C1s	Phase II (recruiting)		NCT05156710		Not yet finalized

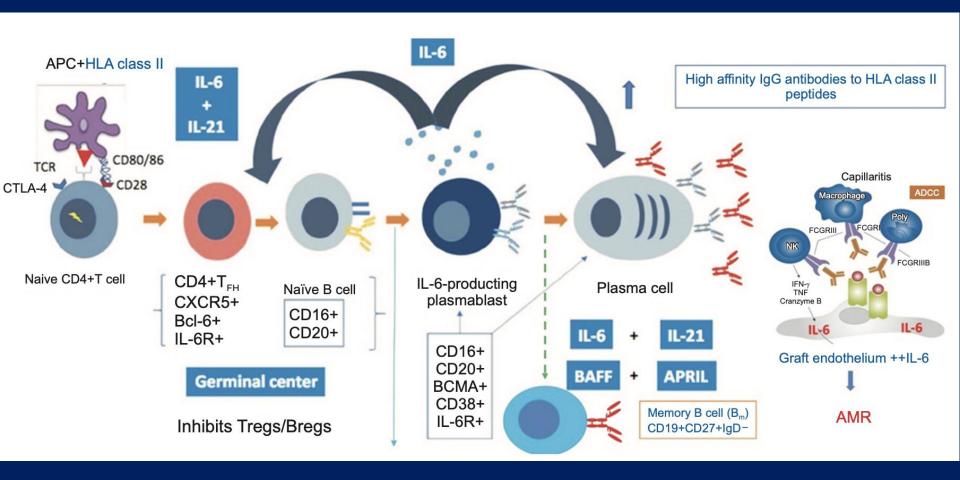
NCT01327573

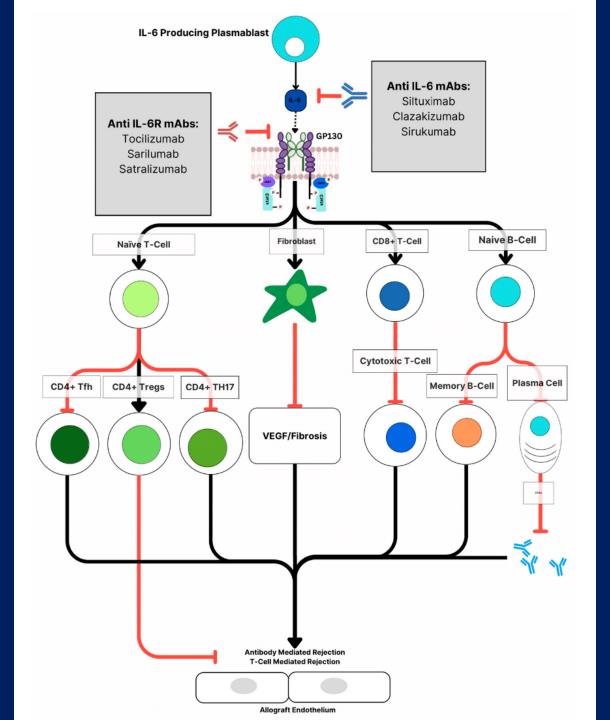
Kulkarni et

al¹¹¹

Phase III

(finished)


C5 cleavage


inhibition

Eculizumab

No impact on biopsy results. Possible

effect on eGFR course

Systematic trials in late and chronic active antibody-mediated rejection							
Primary target	Compound	Mechanism of action	Stage of development	Trial acronym	Identifier ^a	Study	Main trial results
IL-6/IL-6R	Clazakizumab	IL-6 neutrali- zation	Phase II (finished)		NCT03444103	Doberer et al ⁹²	Moderate DSA reduction; modest effect on molecular AMR activity after 12 mo; effect on eGFR slope
			Phase III (prematurely terminated)	IMAGINE	NCT03744910	Nickerson et al ¹⁰⁹	No effect on eGFR slope (not yet published)
	Tocilizumab	IL-6R blockade	Phase III (recruiting)	INTERCEPT	NCT04561986	Streichart et al ¹¹⁰	Not yet finalized

Evaluation of Clazakizumab (anti-IL-6) in Patients with Treatment-Resistant Chronic Active Antibody Mediated Rejection of Kidney Allografts

Methods

Single center Phase 2, Open label Feb '18 - Jan '19

n = 10 Age = 15 to 75 years

Biopsy proven chronic active antibody mediated rejection (cAMR)

Intervention

Clazakizumab 25 mg s/c

Monthly x 12

6 month protocol biopsy

At 12 months, stable patients entered a long term extension (LTE)

Results

lr	n months	eGFR ml/min/1.73m ²	DSAs mean MFI
At	-24 M	52.8 ± 14.6	A - //
	-12 M	-	$7,412 \pm 5,228$
	0 M	38.1 ± 12.2	9,625 ± 5,745
	+12 M	41.6 ± 14.2	5,469 ± 7,675
	+24 M	38.1 ± 20.3	4,167 ± 7,188

Banff 2017 analysis of pre- and posttreatment biopsies showed reductions in g+ptc & C4d scores

- Adverse effects minimal
- Graft loss in 2 patients who discontinued Clazakizumab at 6 M and 12 M

eGFR - estimated glomerular filtration rate

DSAs - donor specific antibodies

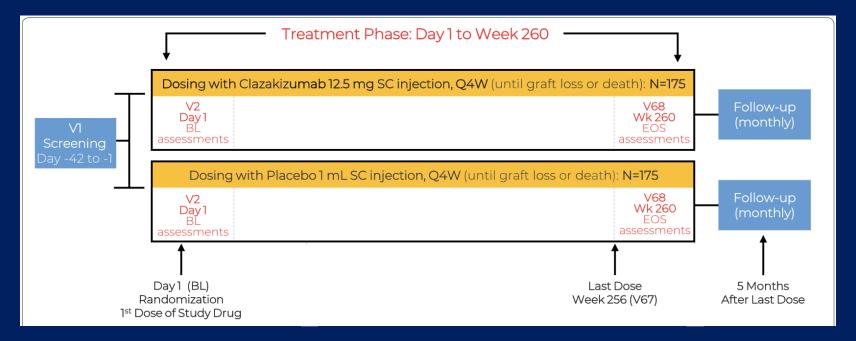
g+ptc - glomerulitis + peritubular capillaritis

Jordan et al, 2021

Visual abstract by:

Krithika Mohan, MD, DNB

@krithicism

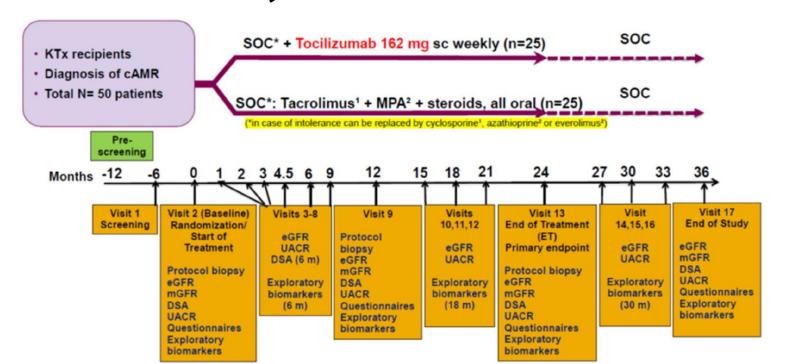

Conclusion In this small cohort of cAMR patients, a trend towards stabilization of eGFR, reductions in DSA, and graft inflammation. No significant safety issues were observed. A trial (IMAGINE) of Clazakizumab in cAMR treatment is underway [NCT03744910].

STUDY PROTOCOL

Open Access

Clazakizumab for the treatment of chronic active antibody-mediated rejection (AMR) in kidney transplant recipients: Phase 3 IMAGINE study rationale and design

Peter W. Nickerson¹, Georg A. Böhmig², Steve Chadban³, Deepali Kumar⁴, Roslyn B. Mannon⁵, Teun van Gelder⁶,


ADDENDUM

Since acceptance of this paper for publication, the results of the first planned interim analysis of the IMAGINE trial have become available, indicating the trial was unlikely to meet the ultimate primary efficacy outcome. Therefore, enrollment to the study has been stopped. The recommendation to stop the study was not based on safety concerns. Communications with investigators and site staff are ongoing for scheduling an end-of-treatment study visit with patients currently participating in the trial. It is clear that we need to continue to search for a solution for transplant recipients at risk of allograft failure and do it in a robust manner that enables a clear decision. We thank the study participants and study staff for participating in the largest placebo-controlled study in caAMR and the transplant community for their advocacy.

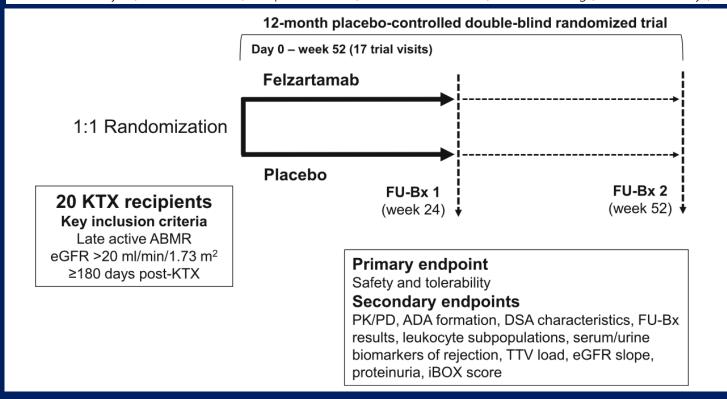
STUDY PROTOCOL

Open Access

Tocilizumab in chronic active antibody-mediated rejection: rationale and protocol of an in-progress randomized controlled open-label multi-center trial (INTERCEPT study)

Systematic trials in late and chronic active antibody-mediated rejection

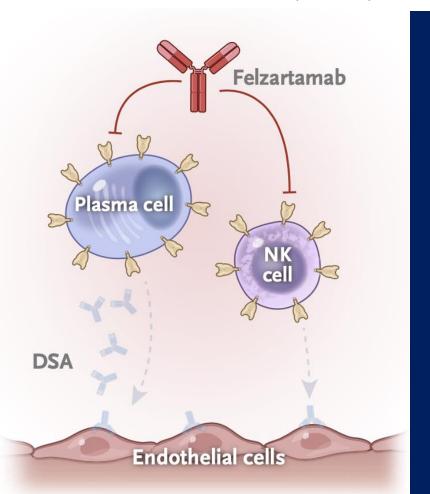
inh tamab CD38	nibition F F B	Phase II (finished) Phase II (finished) Phase II (recruiting) Phase II	BORTEJECT TRIBUTE —	NCT01873157 NCT02201576 NCT03737136	Eskandary et al ⁹¹ —	No effect on DSA levels, morphologic/ molecular biopsy results, and eGFR slope Finalized, but not yet published Not yet finalized
	F B F	(finished) Phase II (recruiting)	TRIBUTE		_	Finalized, but not yet published
	3 F	(recruiting)	_	NCT03737136	_	Not yet finalized
		Phase II				
	nding	(finished)	_	NCT05021484	Mayer et al ⁴⁴	Reduction/resolution of morphologic/ molecular AMR activity; NK cell depletion; decrease in plasma dd-cfDNA
)+ B cell F pletion	Phase II (prematurely terminated)	TRITON	2010-023746- 67	Moreso et al ¹⁰⁷	No effect on morphologic biopsy results and eGFR course
	F	Phase IV (prematurely terminated)	RituxiCAN-C4	NCT00476164	Shiu et al ¹⁰⁸	No effect on clinical outcomes
	F	Phase III (recruiting)	TAR:GET-1	NCT03994783		Not yet finalized
matinib SYK		Phase II (recruiting)	FOSTAMR	NCT03991780	_	Not yet finalized
1		I	Phase IV (prematurely terminated) Phase III (recruiting) natinib SYK Phase II	Phase IV RituxiCAN-C4 (prematurely terminated) Phase III TAR:GET-1 (recruiting) Phase II FOSTAMR	Phase IV (prematurely terminated) Phase III TAR:GET-1 NCT03994783 (recruiting) Phase III FOSTAMR NCT03991780	Phase IV (prematurely terminated) Phase III TAR:GET-1 NCT03994783 (recruiting) Phase III FOSTAMR NCT03991780 —


STUDY PROTOCOL

Open Access

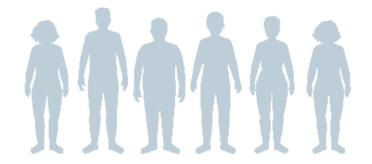
Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial

Katharina A. Mayer¹, Klemens Budde², Philip F. Halloran³, Konstantin Doberer¹, Lionel Rostaing⁴, Farsad Eskandary¹,



The NEW ENGLAND JOURNAL of MEDICINE

Felzartamab for Antibody-Mediated Rejection


A PLAIN LANGUAGE SUMMARY

Based on the NEJM publication: A Randomized Phase 2 Trial of Felzartamab in Antibody-Mediated Rejection by K.A. Mayer et al. (published May 25, 2024)

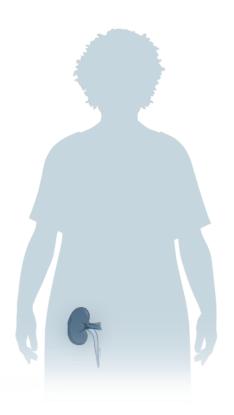
TRIAL DESIGN

- PHASE 2
- DOUBLE-BLIND
- RANDOMIZED
- PLACEBO-CONTROLLED
- DURATION OF TREATMENT: 24 WEEKS; TOTAL FOLLOW-UP: 52 WEEKS
- LOCATIONS: VIENNA AND BERLIN

wно

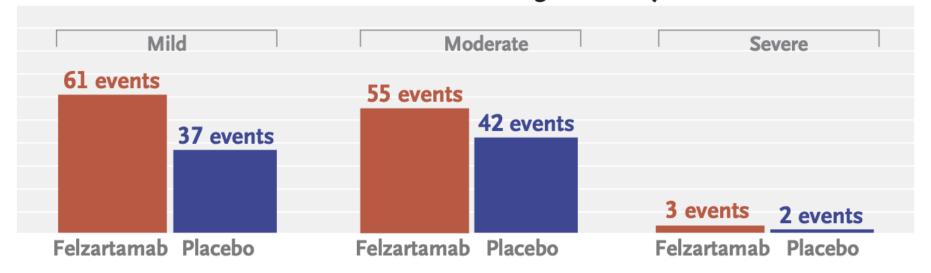
22 adults

Median age, 39 years


CLINICAL STATUS

Biopsy-diagnosed antibody-mediated kidney-transplant rejection

Estimated glomerular filtration rate of at least 20 ml/min/1.73 m²

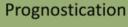

Presence of donor-specific antibody

RESOLUTION

At 24 weeks, resolution of antibodymediated kidney-transplant rejection (a key secondary outcome) was **four times** as likely with felzartamab as with placebo.

Adverse Events According to Severity

LIMITATIONS AND REMAINING QUESTIONS


- The trial was exploratory, with a primary safety objective.
- The sample size was small, and the duration of the trial was short.
- The trial was conducted in Europe in a primarily White population; the findings may not be generalizable to transplant populations in other regions, including North America.

CONCLUSIONS

In patients with antibody-mediated kidneytransplant rejection, treatment with intravenous felzartamab over 24 weeks had acceptable safety and side-effect profiles.

A thorough analysis of follow-up biopsies did not reveal any molecular features of TCMR.

Response to treatment

Prediction of therapy response

• eGFR returned within 10% of baseline

• Urine protein decline >25%

Outcome prognostication:

- Single markers (e.g., eGFR evolution)
- Multidimensional markers (iBox)
- Patient comorbidities

Predictive markers:

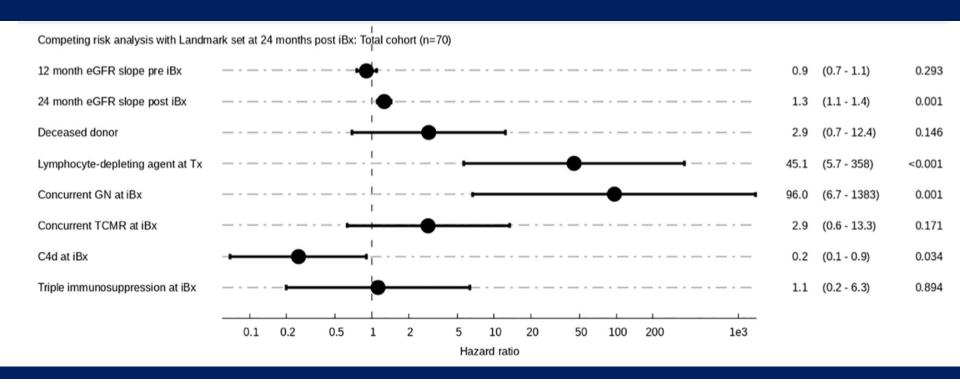
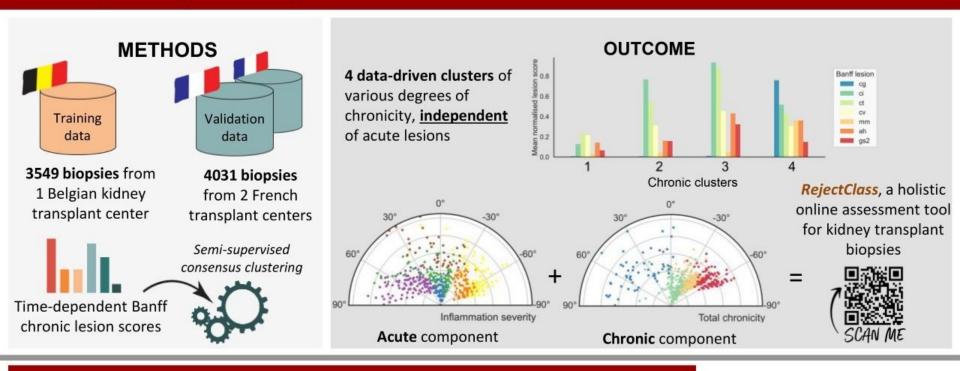

- None available
- Immune-dominant DSA MFI or cumulative DSA MFI decline >50%
- MVI (ptc +g) = 0

TABLE 2 Challenges and opportunities to improve studies in ABMR.

Challenges	Opportunities
Heterogenous cases with varied clinical outcomes	
 Varied baseline DSA quantity Preexisting versus <i>de novo</i> DSA ABMR detected via surveillance or indication biopsy 	 Plan to enroll patients with a similar risk profile as those included in pilot and early observational studies. Balance the inclusion of patients with preexisting and <i>de novo</i> DSA. Adjust for whether the ABMR diagnosis was made via indication or surveillance biopsy
Difficult to conduct clinical trials because of low enrollment and need to	for prolonged follow-up
 The time to graft loss after ABMR detection can be several years. High risk transplants with DSA and positive crossmatch are done less often making it more difficult to enroll patients in clinical trials. The downside of improving the homogeneity in the studied patient population is a decrease in patients who meet inclusion criteria. Patients with chronic ABMR often not found early because these patients may be followed by non-transplant nephrologists and/or do not get surveillance DSA or biopsies 	with donor specific antibody.
Lack of standardized reporting limit the ability to communicate or com	bine results for meta-analysis
Key details about DSA, histology, and patient characteristics often missing in the literature	 Collaboration and development of minimum standards for reporting by major transplant groups (e.g., Banff). Minimal standard reporting consistently followed by industry and enforced by

major clinical journals

OUTCOME PREDICTORS IN LATE/CHRONIC AMR

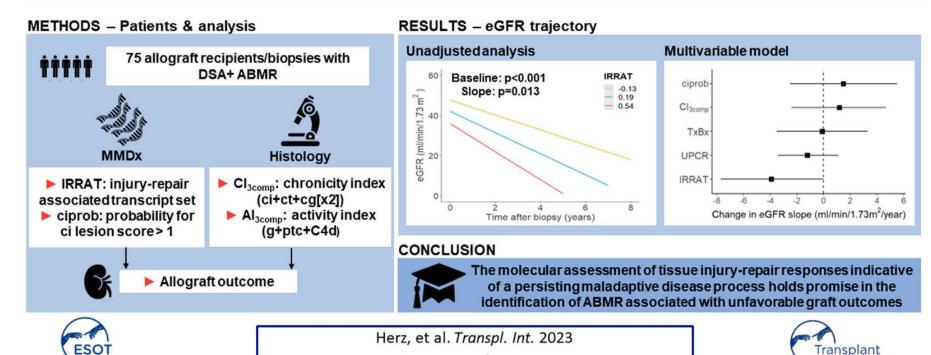

Concurrent glomerulonephritis was the only biopsy-based predictor of eGFR slope.

papilorioa. E i April 2022

Data-Driven Chronic Allograft Phenotypes: A Novel and Validated Complement for Histologic Assessment of Kidney Transplant Biopsies

Conclusion

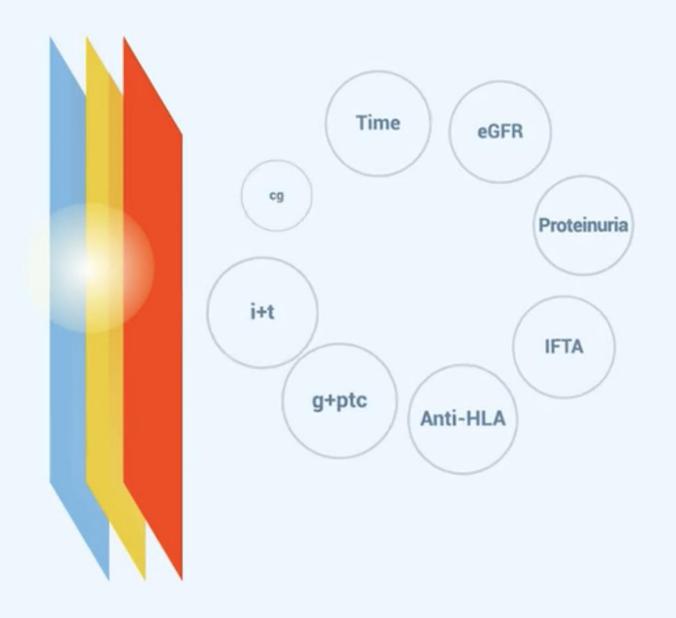
The evaluation of total chronicity provides complementary information of kidney transplant pathology on top of the estimation of disease activity from acute lesion scores.

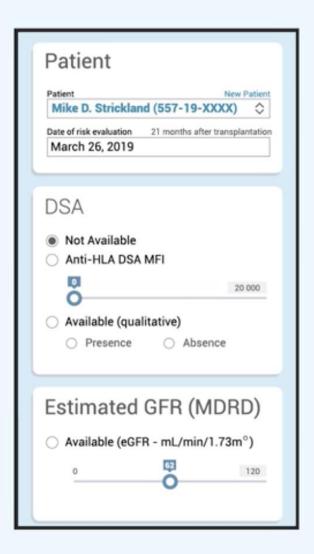

doi: 10.1681/ASN.

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOG

Morphologic and molecular features of antibody-mediated transplant rejection: Pivotal role of molecular injury as an independent predictor of renal allograft functional decline

OBJECTIVE


To assess the prognostic potential of histomorphologic and molecular biopsy scores in predicting graft loss and eGFR decline among patients with late antibody-mediated rejection (ABMR)



doi: doi: 10.3389/ti.2023.12135

GRAPHICAL ABSTRACT |

The iBox technology: Leading the way to prevent and treat organ failure with Al.



Prediction of Graft Survival

iBox is highly reliable

C-index=0.81; 95% Cl, 0.79 to 0.83

Male and female

Europe and US

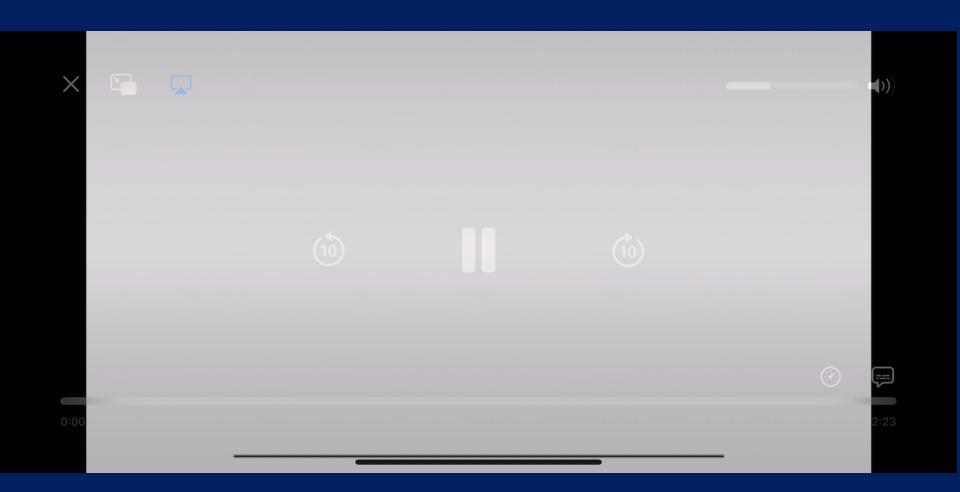
Different ethnic and social backgrounds

Different allocation systems

Clinical scenarios

Different treatments

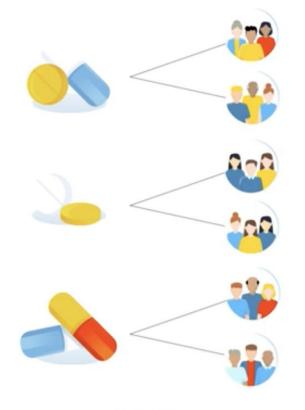
Next Generation of Clinical Trials



Surrogate Endpoint

Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study

Alexandre Loupy, ^{1,2} Olivier Aubert, ^{1,2} Babak J Orandi, ³ Maarten Naesens, ⁴ Yassine Bouatou, ¹ Marc Raynaud, ¹ Gillian Divard, ¹ Annette M Jackson, ⁵ Denis Viglietti, ^{1,6} Magali Giral, ⁷ Nassim Kamar, ⁸ Olivier Thaunat, ⁹ Emmanuel Morelon, ⁹ Michel Delahousse, ¹⁰ Dirk Kuypers, ⁴ Alexandre Hertig, ¹¹ Eric Rondeau, ¹¹ Elodie Bailly, ¹¹ Farsad Eskandary, ¹² Georg Böhmig, ¹² Gaurav Gupta, ¹³ Denis Glotz, ^{1,6} Christophe Legendre, ^{1,2} Robert A Montgomery, ¹⁴ Mark D Stegall, ¹⁵ Jean-Philippe Empana, ^{1,16} Xavier Jouven, ¹ Dorry L Segev, ¹⁷ Carmen Lefaucheur^{1,6}


Table 4 iBox variables

Risk factor	Full model	Simplified model	Quantification	Туре
Time from transplant to evaluation	X	X	-	Continuous
eGFR	Х	X	-	Continuous
Proteinuria (log transformed)	Х	Х	-	Continuous
iDSA MFI category	X	X	< 5000	Categorical
			≥ 500-3000	
			≥ 3000-6000	
			≥ 6000	
Interstitial fibrosis/tubular	Х		0/1	Categorical
atrophy (IFTA)			2	
			3	
Microcirculation	Х		0-2	Categorical
inflammation (g+ptc)			3-4	
			5-6	
Interstitial inflammation	Х		0-2	Categorical
and tubulitis (i+t)			≥ 3	
Transplant glomerulopathy	Х		0	Categorical
			≥ 1	
	-			

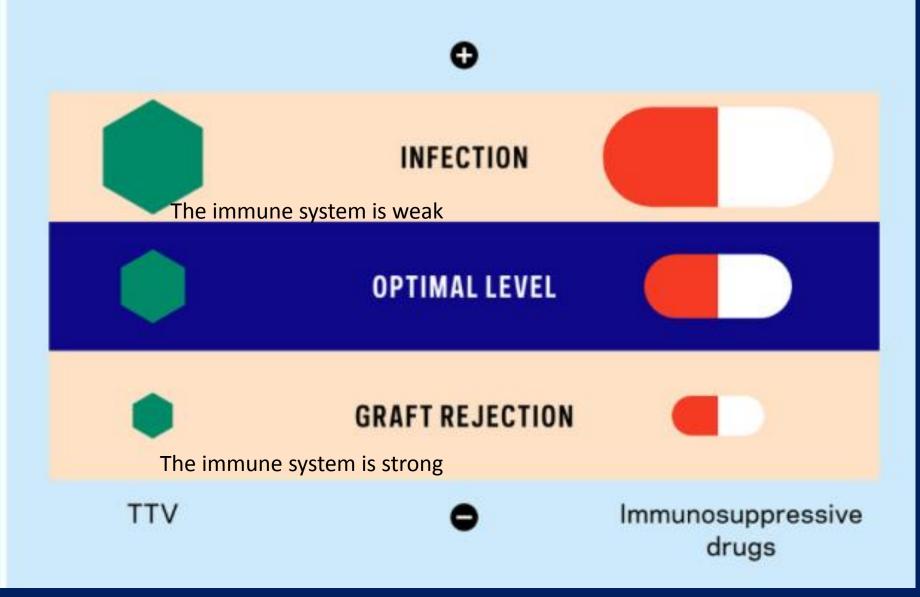
DSA Donor-specific antibodies, eGFR Estimated glomerular filtration rate, MFI Mean fluorescence intensity

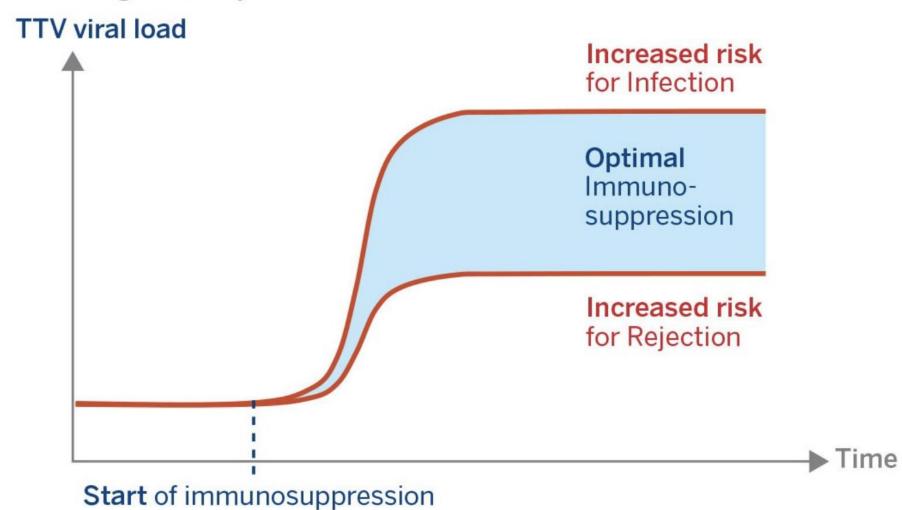
iBox validation

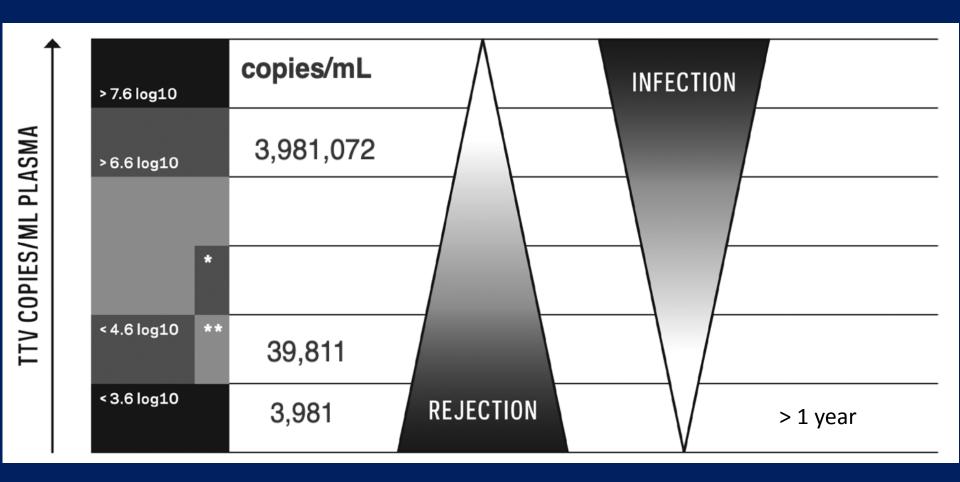
4000 patients

3 RCTs

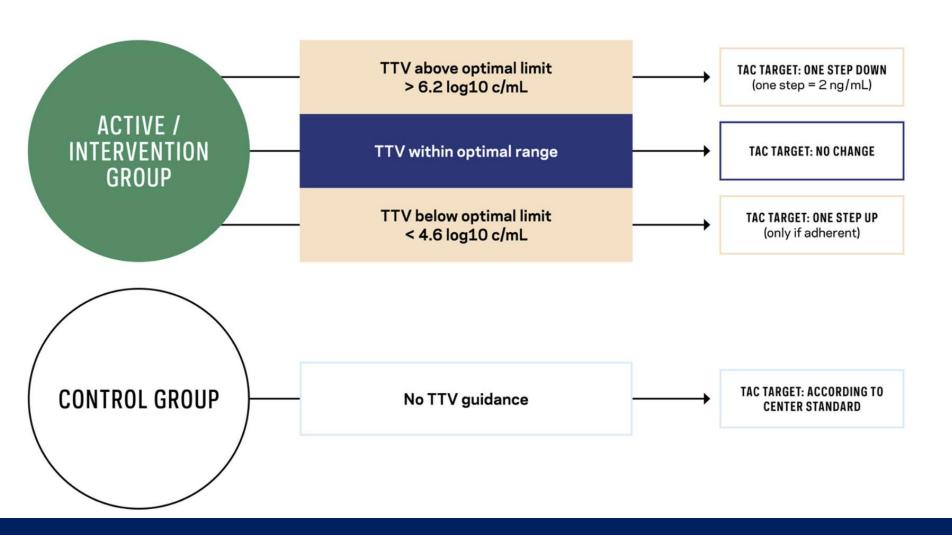
A NOVEL CONCEPT


Torque Teno Virus (TTV)

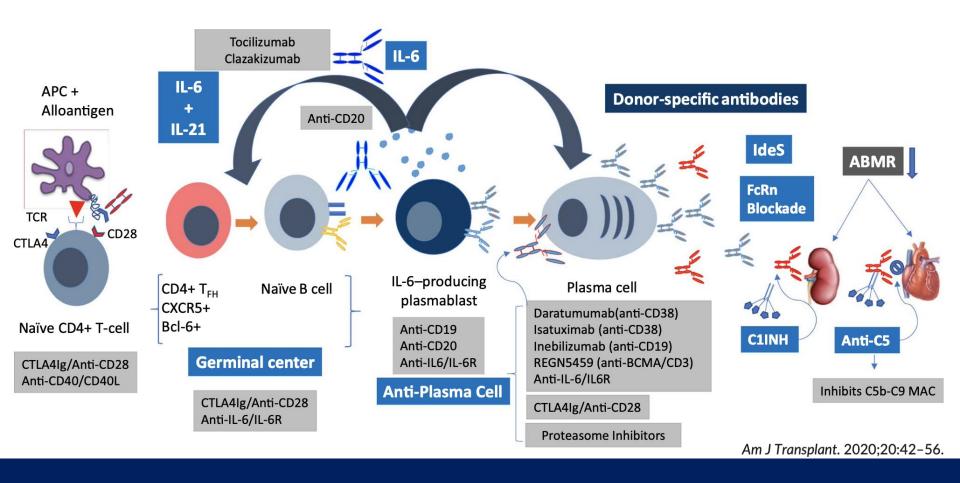

Immune monitoring by TTV


- DETECTABLE IN
 THE BLOOD OF ALL KIDNEY
 TRANSPLANT RECIPIENTS
 - CAUSES NO DISEASE
- REFLECTS THE IMMUNE FUNCTION OF THE HOST
 - TTV LEVEL IN THE BLOOD
 ASSOCIATES WITH INFECTION
 AND GRAFT REJECTION

TTV mirrors the immune function



Solid Organ Transplant



TAC DOSING

Emerging Therapeutic Approaches to Reducing Alloantibody Injury to Allografts

REASONS FOR THE LACK OF STANDARD THERAPY FOR CAAMR

REASONS FOR THE LACK OF STANDARD THERAPY FOR CAAMR

•Summary of 2017 FDA public workshop:

- "there are no FDA-approved treatments for acute or chronic AMR.
- Similar to desensitization protocols, plasmapheresis or high-dose IVIG constitute standard of care with different add-on treatments per center preference."

•Current recommendations for caAMR focus on supportive care and optimized baseline immunosuppression. Meanwhile, median graft survival in patients with caAMR is <2 y after diagnosis

Is Lack of Consensus on the Management of Chronic Active Antibody-Mediated Rejection Harming Renal Transplant Recipients?

Author:

*Lionel Rostaing¹

TABLE 1 Framework of ABMR clinical phenotypes.

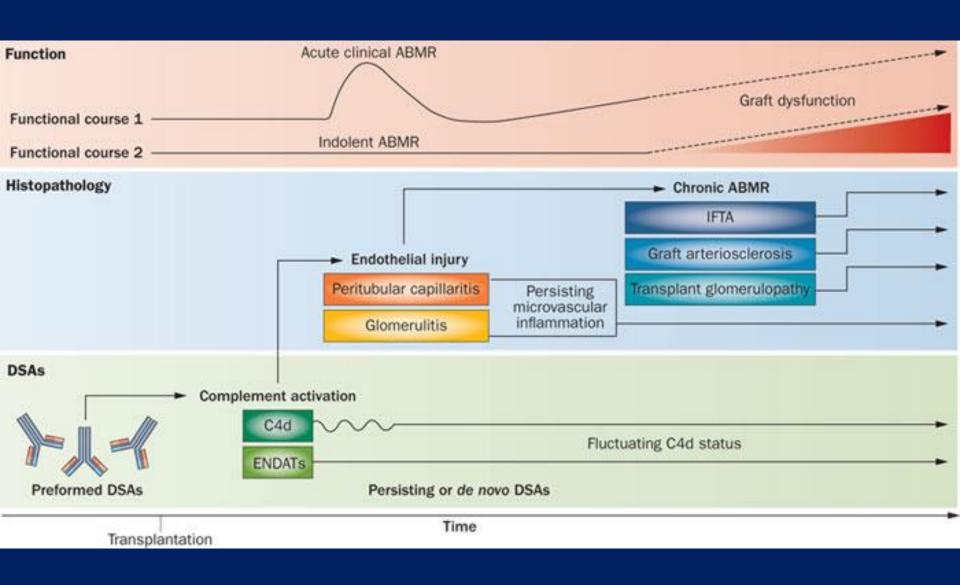
Timing	Donor specific antibody		Histology	Clinical presentation
Hyperactive rejection (hours post-transplant)	Preexisting		Diffuse inflammation, necrosis, and thrombotic microangiopathy	Abrupt graft loss
Early active (<30 days post-transplant)	Preexisting (or patient is Non immunologically naïve with history of sensitizing events including pregnancy, transplant, or blood transfusion)	Can have similar histologic features depending on time of detection	Banff active ABMR C4d positivity and thrombotic microangiopathy usually present. Banff cg = 0	Abrupt allograft dysfunction correlating with increased DSA quantity usually 7–14 days post-transplant
Late (>30 days post- transplant)	Preexisting		Banff active or chronic active ABMR (continuum) +/— C4d positivity	+/- allograft dysfunction and proteinuria Can occur in patients with or without Early active (<30 days post-transplant active ABMR)
	De novo (MOST COMMON)		Banff active or chronic active ABMR (continuum) +/- C4d positivity Concomitant TCMR often present with <i>de novo</i> DSA	+/— allograft dysfunction and proteinuria

Active AMR; All 3 criteria must be met for diagnosis

- 1. Active lesions* of AMR present, at least 1 of the following:
- Microvascular inflammation (g > 0 and/or ptc > 0), in the absence of recurrent or de novo glomerulonephritis, although in the presence of acute TCMR, borderline
- infiltrate, or infection, ptc ≥ 1 alone is not sufficient and g must be ≥ 1
 Intimal or transmural arteritis (v > 0)
- Acute thrombotic microangiopathy, in the absence of any other cause
- 2. At least 1 or more of the following:
- Linear C4d staining in peritubular capillaries or medullary vasa recta (C4d2 or C4d3 by IF on frozen sections, or C4d > 0 by IHC on paraffin sections)
- At least moderate microvascular inflammation ([g + ptc] ≥2) in the absence of recurrent or de novo glomerulonephritis, although in the presence of acute TCMR,
 - borderline infiltrate, or infection, ptc ≥ 2 alone is not sufficient and g must be ≥1
- Biopsy-based transcript diagnostics for AMR/MVI above a defined threshold, if thoroughly validated for use as substitute for MVI and available

performed, this should be done, following the STAR guidelines. Detection of non-HLA antibodies (including ABO antibodies in ABO-incompatible transplantation) can be used as serologic Banff criterion for diagnosis of AMR, if the testing protocols are sufficiently standardized and clinically validated for the appropriate clinical

- 3. Evidence of circulating donor-specific antibodies (DSA to HLA or other antigens). If thorough testing for DSA (anti-HLA or other specificity) has not yet been
- context. C4d staining as noted above in Criterion 2 may substitute for DSA.
- *Can be observed in AMR and strengthen the diagnosis but not diagnostic in itself: acute tubular injury, in the absence of any other apparent cause


Chronic active AMR; all 3 criteria must be met for diagnosis
1. Chronic lesions* of AMR present, at least 1 of the following:
 Transplant glomerulopathy (cg > 0) if no evidence of chronic TMA or chronic recurrent/de novo glomerulonephritis; includes changes evident by electron microscopy (EM) alone (cg1a) Severe peritubular capillary basement membrane multilayering (requires EM)
 Identical to criterion 2 for active AMR, above Identical to criterion 3 for active AMR, above, including strong recommendation for DSA testing whenever criteria 1 and 2 are met.
*Other lesions can be observed in AMR and strengthen the diagnosis but are not diagnostic by themselves: arterial intimal fibrosis (cv) of new onset, excluding other causes; leukocytes within the sclerotic intima favour chronic AMR if there is no prior history of TCMR;

HOW WAS THE TRIAL CONDUCTED?

22 patients with antibody-mediated rejection of a functioning kidney allograft at least 180 days after transplantation, diagnosed through biopsy results, were assigned to receive nine intravenous infusions of either felzartamab (16 mg/kg) or placebo over 24 weeks. The primary outcome was the safety and side-effect profile of felzartamab over 52 weeks.

